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1. INTRODUCTION 

A number of physically important systems display multiple solutions (see [l ] 
and the references therein). It is of interest to know the dependence of the number 
of solutions on the parameters in the model. The most powerful techniques for 
accomplishing this task are the singularity and bifurcation theories [2-41. These 
theories require the calculation of special singular solutions. Consider a system 
described by an algebraic equation 

F(Y> P) ==o (1) 

where y is a scalar variable describing the state of the system and p is a vector of 
parameters. A solution is defined to be a singularity of codimension k if it satisfies 
Eq. (1) and the conditions 

d-FM0 
--i- dv ’ 

i = 1, 2,..., k 

&flF 
dyk+l # 0. 

(2) 

(3) 

Singularities of codimension 1, 2, 3, 4 are called fold, cusp, swallowtail, and butter- 
fly, respectively. Under certain restrictions, a system has k + 1 local solutions in 
some neighborhood of a singularity of codimension k. A technique proposed by 
Briicker and Lander [IS] and extended by Balakotaiah and Luss [4] enables the 
use of the singular points to divide the global parameter space p into regions con- 
taining different numbers of solutions. 

Singularities of differential equations may be found either directly or by studying 
the set of algebraic equations resulting from discretization. The direct approach 
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uses the Liapunov-Schmidt reduction technique [3] applied to the di~ere~t~a~ 
equation and is difficult to apply from a computational standpoint, while the dis- 
cretized form of a differential equation may not retain all the features of the or~g~~a~ 
equation [6 ]. 

We present here a systematic method of finding singularities of a two-point boun- 
dary value problem with unmixed boundary condi s. It is based on a techn’ 
developed by Michelsen and Villadsen [7] and Ku 
pute branching (fold) points and extended by E 
cusp points. These previous efforts used geometric features of the bi~~rcat~~~ 
diagrams to define the singularities. This made the extension to hig 
singularities rather cumbersome and difficult. We extend the meth 
find directly singularities of higher codimension. 

ETERMINATION OF A SINGULAR POINT OF CODIMENSION k 

Consider the two-point boundary value problem 

The shooting method proposed by Keller [lo] can be used to solve this 
In this method, the boundary value problem is converted into an Enitial value 
problem by introducing a scalar variable s: 

~=f(x,u,~,p) O<x<l 
dx2 

(7) 

u(O)=b,s-c,d, isa 

g(O)=c,d,-a,s 

where we choose c0 and c1 such that 

The second boun ary condition is written as an algebraic equation in s: 

F(s,p) 4 a,u(l,J)+b-~(l.S)-d2=0. 
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For any assumed value of s we can evaluate the profile U(X, S) as well as the 
function F by integrating the initial value problem defined by Eqs. (7-9). When F 
vanishes for a certain S, the corresponding profile u(x, s) is a solution to the boun- 
dary value problem. Thus, the solution of the boundary value problem is reduced 
to finding the zeros of the algebraic equation (11). A singular point of codimension 
k is found by solving simultaneously Eq. (11) and the k equations 

~=a,qi(l,s)+h,~(l,s)=O (i = 1, 2,..., k) 

where 

qi(x, s) = w. 

The functions qi(x, S) can be found by solving the initial value problems that are 
obtained when Eqs. (7-9) are differentiated with respect to S: 

41(O) = b1; 4i(O) = 0, i>2 (14) 

gQO)=a,; Z(O)=O, i> 2. 

Thus, finding a singular point of codimension k requires the integration of (k + 1) 
initial value problems Eqs. (7-9) and (13315) and solution of k + 1 algebraic 
Eqs. (11) and (12). 

We now illustrate the procedure with a specific example. 

3. EXAMPLE 

A nonisothermal Langmuir-Hinshelwood reaction occurring in a symmetric 
catalyst pellet satisfies the dimensionless equation 

d’v ndy 4’~ 1 
dx2+xZ=(1+Ky)2exp l-l+P(l-y) 4 MY> P) (16) 
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where pT= (/I?, y, K, 4) and the geometric factor n equals to 0, 1, 2 for planar, cyhn- 
drical, and spherical geometries, respectively. The boundary cot&ions are 

g(Q)=0 (17) 

y(l)= 1. itsi 

Brown, Schmitz, and Tsotsis [ 111 found two butterfly points in the correspon 
lumped-parameter system, indicating that two separate regions with five sohttions 
exist in the parameter space. To calculate the butterfly points of the ~ist~~~~te~ 

model, boundary condition (18) was chosen as the algebraic equation Thus, 

F(s, p) A U(l,S)- 1 =O. (191 

We take b, = c,, = 1 and a, = c1 = 0. To find a butterfly singularity we solve Eq. (19) 
and the four equations 

d’F 
ds’ 

=qi(l,s)=o (i= 1, 2, 3, 4). (201 

Values of u( 1, s) and qi( 1, s) are obtained by solving the folloiving five in$tial 
value problems: 

$+;$=h(u, p) 

u(0) = s 021 

-g(O)=0 W! 

41(O) = 1; 4i(O) = 0 (i=2, 3,4) (25) 

g(Q)=o: i= 1, 2, 3, 4 

where 
dh 

g1 =-&p 

d2h dh 
‘!h=-@:+-&92 

4 3 gr=~q:+6~q:q,+~(3q:f44’i43)+~q4. 
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TABLE I 

Butterfly Points for Nonisothermal Langmuir-Hinshelwood Reaction in a Catalyst Pellet 

Geometry s P Y K 4 

Slab (n = 0) 0.5970 6.466 3.524 4.271 1.282 
0.0684 - 0.906 0.259 98.436 89.760 

Cylinder (n = 1) 0.552 6.983 3.601 4.407 1.900 
0.042 -0.926 0.215 137.260 180.940 

Sphere (n = 2) 0.505 7.530 3.672 4.558 2.415 
0.022 - 0.945 0.172 212.030 345.870 

Note that the scalar variable in this problem corresponds to the concentration of 
the reactant at the center of the catalyst pellet. 

The initial value problems were integrated by a standard Gear package. The 
resulting algebraic equations were solved by a modified Newton-Raphson method 
in which the Jacobian matrix was computed numerically. Two butterfly points were 
found for each of the standard geometries, i.e., infinite slab, infinite cylinder, and 
sphere. The results are listed in Table I. 

4. FINDING SINGULARITIES FOR PROBLEMS WITH A DISTINGUISHED PARAMETER 

In many physical problems it is important to know the dependence of the steady 
state solution on a distinguished parameter (bifurcation variable), say A. The steady 
state equation in such a case is written as 

F(Y, 4 P*) = 0 (28) 

where p* is a vector of parameters which are independent of A.. The graph of y ver- 
sus i for a fixed p* is called a bifurcation diagram. Parameter regions with different 
types of bifurcation diagrams coalesce at singular points of Eq. (28). These 
degenerate points are defined by various equalities and inequalities involving partial 
derivatives of F with respect to y and 1 [3]. For example, a pitchfork singularity is 
defined by 

FzF-~F-F-O 
ay ay2 ai Pa) 

($q(g&)#O G’9b) 
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The technique described in Section 2 may be used to calculte the partial derivatives 
with respect to k To illustrate this consider the boundary value problem 

and assume (for simplicity) that the boundary conditions do not involve A and are 
given by Eqs. (5) and (6). Equation (11) is now rewritten as 

F(s, /l,p*) !2 a,u(l,s, %)+h,L&s. %-L&=0. 

The partial derivatives are calculated from the relation 

aitjF 

A &q,,j(‘, ‘, ‘1 + ‘2 dq,,( 1, 3, a) 

add2 - dx (32) 

where 

are found by solving the initial-value problems that are obtained by differentiation 
Eqs. (5), (6), and (30) w.r.t. s and 2, i.e., 

d& a’+i 
dx2 =- as*a2 

qi.j(O) = O i32orj3 I (35) 

~(O)=a, !$O)=O i>,2orj> 1. 

5. REMARKS 

The proposed technique may be use to compute any singularity fsr a system 
described by a two-point boundary value problem which may be solved by the 
shooting technique. Extensions are possible for systems described by several dif- 
ferential equations but containing only a single intrinsic state variable [12] as well 
as to systems described by partial differential equations. The computed singular 
points may be used to divide the parameter space into regions with qualitatively 
different bifurcation diagrams. Further details may be foun 
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